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Problem: Sampling a Transdimensional Space

The problem of intrest is sampling probability distribution π on

X =
⋃
k∈K

({k} ×Θk), (1)

with parameters θk ∈ Θk ⊆ Rnk and model index (or indicator) k ∈ K.
We want to make inference on the joint distribution (or conditional
factorization)

π(k,θk) = π(k)π(θk|k).

When data y is introduced this is π(k,θk|y) = π(k|y)π(θk|k,y).
Notation. Denote x = (k,θk), ϕn is n-dimensional standard normal,
ϕΣn is a normal with zero mean and Σn covariance, |Jf (θ)| denotes
absolute determinant of Jacobian matrix of function f : Rn → Rn, πk is
the distribution with density π(θk|k), and ⊗nν is ν ⊗ · · · ⊗ ν︸ ︷︷ ︸

n times

.
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Reversible Jump Markov Chain Monte Carlo

We want to propose from point x to point x′, noting θk, θ
′
k′ have

dimensions nk, nk′ respectively.

Require dimensions match: introduce auxiliary variables
uk ∈ Uk,k′ ⊆ Rwk and uk′ ∈ Uk′,k ⊆ Rwk′ such that
nk + wk = nk′ + wk′ .

Choose a diffeomorphism e. θk′ ,uk′ = hk,k′(θk,uk).

A (simplified) RJMCMC Algorithm when nk′ > nk is:

1 Propose model index k′ ∼ jk( · )
2 Propose auxiliary variables uk ∼ gk,k′( · )
3 Accept with probability

α(x,x′) = 1 ∧
π(x′)jk′(k)gk′,k(u

′
k′)

π(x)jk(k′)gk,k′(uk)

∣∣Jhk,k′ (θk,uk)
∣∣. (2)
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Motivation: RJMCMC Proposal Performance

Figure: Points in a 1D model (left), proposed via RJMCMC to points in a 2D
model (right).

Davies, Salomone, Sutton, Drovandi (QUT CDS) Transport RJ Proposals WSDL 2022 7 / 34



Transport Maps and Normalizing Flows

Transport Map (TM)

A function T : Rn → Rn is called a transport map from distribution µθ to
distribution µZ if µZ = T♯µθ, i.e. µZ is the pushforward of µθ using the
measurable function T .

Normalizing Flows (NF) and Flow-Based Models

Let {Tψ} be a family of diffeomorphisms with domain on the support of some
arbitrary base distribution µZ . Then, for fixed parameters ψ, the PDF of the
random vector ϑ = Tψ(Z) is

µϑ(ϑ;ψ) = µz(T
−1
ψ (ϑ))|JT−1

ψ
(ϑ)|, ϑ ∈ Rn. (3)

Distributions µϑ are flow-based models, where {Tψ} are the normalizing flows.

With finite samples s ∼ π, we obtain an approximate TM T̂ via density
estimation, minimising the KLD from {s} to µϑ.
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Proposed Method: Transport Reversible Jump Proposals

First, let ν be a univariate analytic
distribution e.g. ϕ.

For each model k ∈M:

Define reference distributions
⊗nk

ν.

Train flows on samples
sk ∼ π(θk|k) to obtain T̂k.

Then, a transdimensional proposal
where nk′ > nk is

zk ← Tk(θk),

z′k′ ← h̄k,k′(zk,uk),

θk′ ← T−1
k′ (z′k′),

(4)

where h̄k,k′ is a volume-preserving
diffeomorphism on ⊗nk

ν.

θ1

u1 ∼ ν

(θ
(1)
2 , θ

(2)
2 ) = T−1

2 (z1, u1)

(θ
(1)
2 , θ

(2)
2 )

θ1

θ1 = T−1
1 (z1)

(z
(1)
2 , z

(2)
2 ) = T2(θ

(1)
2 , θ

(2)
2 )z1 = T1(θ1)

(1)
, θ

(2)
2 )

Figure: Illustration of the proposal class.
Here, the reference ν is Gaussian. The
diffeomorphisms (h̄k,k′) on the reference
distributions simply concatenate or
extract coordinates as required.
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Proposition: RJMCMC with Exact TMs

Proposition 1

Suppose that RJMCMC proposals are of the form described in (4), and for
each k ∈ K, satisfy Tk♯ πk = ⊗nk

ν. Then, (2) reduces to

α
(
x,x′) = 1 ∧ π(k′)

π(k)

jk′(k)

jk(k′)
. (5)

Corollary

Provided the conditions of Proposition 1 are satisfied, choosing {jk} such
that

π(k′)jk′(k) = π(k)jk(k
′), ∀k, k′ ∈ K, (6)

leads to a rejection-free proposal.
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Sinh Arcsinh 1D 2D Example

As an illustrative example with known TMs, we use the (element-wise)
inverse sinh-arcsinh transformation of [Jones and Pewsey, 2009]

Sϵ,δ(·) = sinh(δ−1 ⊙ (sinh−1(·) + ϵ)), ϵ ∈ Rn, δ ∈ Rn
+.

For Z ∼ N (0n, In×n) and lower triangular n× n matrix L, the exact (or
“perfect”) transport is

T (Z) = Sϵ,δ(LZ), i.e. T−1(·) = L−1S−1
ϵ,δ(·), (7)

for chosen reference distributions ϕn, nk = k. The PDF for θ = T (Z)
takes the form in (3). The target of interest for this example, where

θ1 = (θ
(1)
1 ) and θ2 = (θ

(1)
2 , θ

(2)
2 ), is

π(k,θk) =

{
1
4pϵ1,δ1,1

(
θ1
)
, k = 1,

3
4pϵ2,δ2,L

(
θ2
)
, k = 2,

(8)
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Example: Sinh Arcsinh Target with Transport RJ Proposal

Systematic draws from
conditional target π(x1|k = 1)
of (8) are transported from
(1, θ1) ∈ K × R1 (top left) to
(2, (θ1, θ2)) ∈ K × R2 via TRJ
proposals using:

Top right Approximate
affine,

Bottom left Approximate
RQMA-NF,

Bottom right Perfect TM.

The auxilliary variables in the
proposals are also drawn
systematically (30 for each point
in the source distribution).
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Example: Sinh Arcsinh Target with Transport RJ Proposal
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Figure: Running estimates of the model probabilities for the k = 2 component of
the Sinh-Arcsinh target. Proposal are all TRJ with input TMs (1) Affine, (2)
RQMA-NF, (3) Perfect. Ten chains on each proposal type are depicted, where
alternating within-model proposals are a simple normal random walk.
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Modified Bartolucci Bridge Sampling Estimator

For an RJMCMC chain, [Bartolucci et al., 2006] showed that the Bayes
factor Bk,k′ (ratio of marginal likelihoods) is estimated via

B̂k,k′ =
N−1

k′
∑Nk′

i=1 α
′
i

N−1
k

∑Nk
i=1 αi

, (9)

where Nk′ and Nk are the number of proposed moves from model k′ to k,
and from k to k′, respectively in the run of the chain.
When prior model probabilities are uniform, we obtain estimates of
posterior model probabilities via

π̂(k) = B̂−1
j,k

(
1 +

∑
i∈K\{j}

B̂i,j

)−1

, for arbitrary j ∈ K. (10)

The Modified Bartolucci Estimator (MBE) simply adopts the above for
proposals from samples of the conditional targets.
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Bayesian Factor Analysis

We model monthly exchange rates of six currencies relative to the British
pound, spanning January 1975 to December 1986
[West and Harrison, 1997, ], denoted as yi ∈ R6 for i = 1, ..., 143, of the
random vector Y .
We assume Y ∼ N (06,Σ), where

Σ = βkβ
⊤
k +Λ,

Λ is a 6× 6 positive diagonal matrix,

βk is a 6× k lower-triangular matrix with a positive diagonal,

k is the number of factors, θk dimension 6(k + 1)− k(k − 1)/2.
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Bayesian Factor Analysis: Model Configuration

Following [Lopes and West, 2004], for each βk = [βij ] with i = 1, . . . , 6,
j = 1, . . . , k, the priors are

βij ∼ N (0, 1), i < j

βii ∼ N+(0, 1),

Λii ∼ IG(1.1, 0.05),
(11)

We are interested in the posterior probability of θk = (βk,Λ) for k = 2 or
3 factors, with θk dimensions 17 and 21 respectively. Via Bayes’ Theorem
the posterior is

π(k,θk|y) ∝ p(k)p(βk|k)p(Λ)

143∏
i=1

ϕββ⊤+Λ(yi), (12)

where y = (y1, ...,y143).
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Bayesian Factor Analysis: Proposal Design

Original [Lopes and West, 2004] Independence Proposal

Write µβk
, Bk as the posterior mean and covariance of βk. Denoting

θk = (βk,Λ), the independence proposal is

qk(θk) = qk(βk)

6∏
i=1

qk(Λii), (13)

where for k ∈ K, qk(βk) = N (µβk
, 2Bk), and qk(Λii) = IG(18, 18υ2k,i)

where υ2k,i is the approximate conditional posterior mode of Λii given k.

We compare the [Lopes and West, 2004] proposal to Affine and
RQMA-NF TRJ trained on finite draws s ∼ π(θk|k) obtained via
HMC-NUTS (for k = 3) and SMC (for k = 2).
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Bayesian Factor Analysis: Proposal Comparison
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Bayesian Factor Analysis: Running Estimates from
RJMCMC Chain
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Bayesian Factor Analysis: MBE Study
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Figure: Violin plot showing the variability of the 2-factor model probability
estimates in the case where only the 2-factor and 3-factor models are compared.
Model probability estimates are obtained via the MBE. Ground truth is estimated
via extended individual SMC runs (N = 5 · 104).
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Using One Transport (to rule them all)

Problem: Currently, we need to train an approximate TM for each
model k ∈ K.

Solution: Re-frame target so that a conditional approximate TM can
be used.
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Conditional Transport Reversible Jump Proposals

Dimension-saturation [Brooks et al., 2003] uses the augmented target

π̃(x̃) = π(x)(⊗nmax−nk
ν)(u∽k), (14)

where nmax is the maximum model dimension, x̃ = (k,θ,u∽k), and “∽ k”
identifies that the auxiliary variable is of dimension nmax − nk.

Conditional Transport Method

By training a single conditional NF with the conditioning vector being the
model index k ∈ K, we obtain the necessary approximate TMs. The
proposals are now

(θ′k′ ,u∽k′) = c−1
k′ ◦ T̃

−1(·|k′) ◦ T̃ (·|k) ◦ ck(θk,u∽k), (15)

where k′ ∼ jk, and ck is simply concatenation.
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Example: Block Variable Selection in Robust Regression

We are interested in realizations of a random response variable Y through
a linear combination of predictor variables X1, X2, X3 and
β = (β0, ..., β3) parameters in a regression model

Y = β0 + β1X1 + β2X2 + β3X3 + ϵ,

We model the residual error term as a mixture between standard normal
variable and a normal variable with a large variance. Use the notation for
the model space k = (1, k1, k2, k2) where ki ∈ {0, 1} for i = 1, 2. The
prior distributions are specified as

ki ∼ Bernoulli(1/2), i ∈ {1, 2}, and

βi ∼ N (0, 102), i ∈ {0, 1, 2, 3}.
(16)

The target π is then the posterior distribution over the set of models and
regression coefficients defined using Bayes’ Theorem.
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Example: Block Variable Selection in Robust Regression

Figure: Pairwise plot of the conditional bivariate posterior densities in the Bayesian
variable selection example. All four models feature: k = (1, 0, 0, 0) (Purple) ,
k = (1, 1, 0, 0) (Green), k = (1, 0, 1, 1) (Red), and k = (1, 1, 1, 1) (Blue).

graphics/VS_bbe_all.pdf

Figure: Violin plot showing variability of each proposal type using the Modified
Bartolucci Estimator for the Bayesian variable selection example. To obtain
samples to train the approximate transport maps, each model posterior was
sampled using individual SMC samplers of N = 1000, . . . , 8000 particles with a
random walk kernel. Horizontal lines indicate ground-truth values obtained using
large-sample runs of individual SMC (N = 5 · 104).
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Example: Block Variable Selection in Robust Regression
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Figure: Violin plot showing the variability of the k = (1, 1, 1, 1) model probability
estimate for each proposal type using the MBE vs ground truth individual SMC
(N = 5 · 104). Individual SMC with N = 1000, 8000 particles sampled conditional
targets split into training/test samples for a total of 80 passes.
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Conclusions and Future Work

We have introduced a theoretically rejection-free approach for
RJMCMC proposal design utilizing transport maps.

Proposals using approximate transport maps yield good results when
compared to baseline approaches.

There is the caveat of requiring samples to train the approximate
TMs (but pilot runs are also required in many other approaches).

We have introduced the idea of using a conditional normalizing flow
to reduce training time. This would be useful for large model spaces!

Efforts are justified in expensive-likelihood scenarios.

Finally, whilst the MBE benchmark was used to assess cross-model
proposal quality, the results seem promising and justify further
investigation in lieu of standard RJMCMC.
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