

4 D F

Transport Reversible Jump Proposals Using Normalizing Flows

L. Davies¹³ R. Salomone²³ M. Sutton¹³ C. Drovandi¹³

¹School of Mathematical Sciences Queensland University of Technology

²School of Computer Science Queensland University of Technology

³Center for Data Science Queensland University of Technology

Workshop on Statistical Deep Learning, October 2022

Table of Contents

1 [Motivation and Background](#page-3-0)

- 2 [Transport Reversible Jump Proposals](#page-8-0)
- 3 [Illustrative Example](#page-16-0)
- 4 [Testing Proposal Performance](#page-20-0)
- 5 [Numerical Example Bayesian Factor Analysis](#page-22-0)
- 6 [Conditional Transport Proposals](#page-29-0)

[Discussion](#page-36-0)

Table of Contents

1 [Motivation and Background](#page-3-0)

- **[Transport Reversible Jump Proposals](#page-8-0)**
- **[Illustrative Example](#page-16-0)**
- **[Testing Proposal Performance](#page-20-0)**
- 5 [Numerical Example Bayesian Factor Analysis](#page-22-0)
- **[Conditional Transport Proposals](#page-29-0)**

[Discussion](#page-36-0)

4 D F

∢母→

Problem: Sampling a Transdimensional Space

The problem of intrest is sampling probability distribution π on

$$
\mathcal{X} = \bigcup_{k \in \mathcal{K}} (\{k\} \times \Theta_k), \tag{1}
$$

with *parameters* $\bm{\theta}_k \in \Theta_k \subseteq \mathbb{R}^{n_k}$ and *model index* (or indicator) $k \in \mathcal{K}$. We want to make inference on the joint distribution (or conditional factorization)

$$
\pi(k,\boldsymbol{\theta}_k)=\pi(k)\pi(\boldsymbol{\theta}_k|k).
$$

When data y is introduced this is $\pi(k, \theta_k|y) = \pi(k|y)\pi(\theta_k|k, y)$. **Notation.** Denote $x = (k, \theta_k)$, ϕ_n is n-dimensional standard normal, $\phi_{\boldsymbol{\Sigma}_n}$ is a normal with zero mean and $\boldsymbol{\Sigma}_n$ covariance, $|J_f(\boldsymbol{\theta})|$ denotes absolute determinant of Jacobian matrix of function $f:\mathbb{R}^n\to\mathbb{R}^n$, π_k is the distribution with density $\pi(\bm{\theta}_k|k)$, and $\otimes_n\nu$ is $\nu\otimes\dots\otimes\nu$. \overline{n} \overline{n} [tim](#page-4-0)[e](#page-5-0)[s](#page-2-0)

Reversible Jump Markov Chain Monte Carlo

We want to propose from point x to point x' , noting $\pmb{\theta}_k$, $\pmb{\theta}'_{k'}$ have dimensions $n_k,\ n_{k'}$ respectively.

- Require dimensions match: introduce auxiliary variables $\boldsymbol{u}_k\in\mathcal{U}_{k,k'}\subseteq\mathbb{R}^{w_k}$ and $\boldsymbol{u}_{k'}\in\mathcal{U}_{k',k}\subseteq\mathbb{R}^{w_{k'}}$ such that $n_k + w_k = n_{k'} + w_{k'}.$
- **Choose** a diffeomorphism e. $\bm{\theta}_{k'}, \bm{u}_{k'} = h_{k,k'}(\bm{\theta}_k,\bm{u}_k)$.
- A (simplified) RJMCMC Algorithm when $n_{k^{\prime}}>n_{k}$ is:
	- **1** Propose model index $k' \sim j_k($ \cdot $)$
	- 2 Propose auxiliary variables $u_k \sim g_{k,k'}($.)
	- **3** Accept with probability

$$
\alpha(\boldsymbol{x},\boldsymbol{x}') = 1 \wedge \frac{\pi(\boldsymbol{x}') j_{k'}(k) g_{k',k}(\boldsymbol{u}'_{k'})}{\pi(\boldsymbol{x}) j_k(k') g_{k,k'}(\boldsymbol{u}_k)} \big| J_{h_{k,k'}}(\boldsymbol{\theta}_k, \boldsymbol{u}_k) \big|.
$$
 (2)

 QQ

Motivation: RJMCMC Proposal Performance

model (right).

←□

Transport Map (TM)

A function $T:\mathbb{R}^n\to\mathbb{R}^n$ is called a *transport map* from distribution $\mu_{\bm{\theta}}$ to distribution μ_Z if $\mu_Z = T \sharp \mu_{\theta}$, i.e. μ_Z is the *pushforward* of μ_{θ} using the measurable function T.

Normalizing Flows (NF) and Flow-Based Models

Let $\{T_{\psi}\}\$ be a family of diffeomorphisms with domain on the support of some arbitrary base distribution μ_Z . Then, for fixed parameters ψ , the PDF of the random vector $\mathbf{\vartheta} = T_{\psi}(\mathbf{Z})$ is

$$
\mu_{\boldsymbol{\vartheta}}(\boldsymbol{\vartheta};\boldsymbol{\psi}) = \mu_{\boldsymbol{z}}(T_{\boldsymbol{\psi}}^{-1}(\boldsymbol{\vartheta}))|J_{T_{\boldsymbol{\psi}}^{-1}}(\boldsymbol{\vartheta})|, \ \boldsymbol{\vartheta} \in \mathbb{R}^n.
$$

Distributions μ_{θ} are flow-based models, where $\{T_{\psi}\}\$ are the normalizing flows.

With finite samples $s \sim \pi$, we obtain an approximate TM \hat{T} via density estimation, minimising the KLD from $\{s\}$ to μ_{θ} .

イロメ イ部 メイミメ イミメー

Table of Contents

1 [Motivation and Background](#page-3-0)

- 2 [Transport Reversible Jump Proposals](#page-8-0)
	- **[Illustrative Example](#page-16-0)**
	- **[Testing Proposal Performance](#page-20-0)**
- 5 [Numerical Example Bayesian Factor Analysis](#page-22-0)
- 6 [Conditional Transport Proposals](#page-29-0)

[Discussion](#page-36-0)

4 D F

First, let ν be a univariate analytic distribution e.g. ϕ .

4 D F

 QQQ

First, let ν be a univariate analytic distribution e.g. ϕ . For each model $k \in \mathcal{M}$:

4 0 8

 QQ

- First, let ν be a univariate analytic distribution e.g. ϕ . For each model $k \in \mathcal{M}$:
	- Define reference distributions

 $\otimes_{n_k} \nu$.

 QQ

- First, let ν be a univariate analytic distribution e.g. ϕ . For each model $k \in \mathcal{M}$:
	- Define reference distributions $\otimes_{n_k} \nu$.
	- **•** Train flows on samples $\bm{s}_k \sim \pi(\bm{\theta}_k|k)$ to obtain $\hat{T}_k.$

- First, let ν be a univariate analytic distribution e.g. ϕ . For each model $k \in \mathcal{M}$:
	- Define reference distributions $\otimes_{n_k} \nu$.
	- Train flows on samples $\bm{s}_k \sim \pi(\bm{\theta}_k|k)$ to obtain $\hat{T}_k.$

Then, a transdimensional proposal where $n_{k'} > n_k$ is

$$
z_k \leftarrow T_k(\boldsymbol{\theta}_k),
$$

\n
$$
z'_{k'} \leftarrow \bar{h}_{k,k'}(z_k, u_k),
$$

\n
$$
\boldsymbol{\theta}_{k'} \leftarrow T_{k'}^{-1}(z'_{k'}),
$$

\n(4)

- First, let ν be a univariate analytic distribution e.g. ϕ . For each model $k \in \mathcal{M}$:
	- Define reference distributions $\otimes_{n_k} \nu$.
	- Train flows on samples $\bm{s}_k \sim \pi(\bm{\theta}_k|k)$ to obtain $\hat{T}_k.$

Then, a transdimensional proposal where $n_{k'} > n_k$ is

$$
z_k \leftarrow T_k(\boldsymbol{\theta}_k),
$$

\n
$$
z'_{k'} \leftarrow \bar{h}_{k,k'}(z_k, u_k),
$$

\n
$$
\boldsymbol{\theta}_{k'} \leftarrow T_{k'}^{-1}(z'_{k'}),
$$

\n(4)

where $\bar{h}_{k,k'}$ is a *volume-preserving* diffeomorphism on $\otimes_{n_k} \nu$.

Figure: Illustration of the proposal class. Here, the reference ν is Gaussian. The diffeomorphisms $(\bar{h}_{k,k'})$ on the reference distributions simply concatenate or extract coordinates as required.

Proposition: RJMCMC with Exact TMs

Proposition 1

Suppose that RJMCMC proposals are of the form described in [\(4\)](#page-9-0), and for each $k \in \mathcal{K}$, satisfy $T_k \sharp\, \pi_k = \otimes_{n_k} \nu$. Then, (2) reduces to

$$
\alpha(\boldsymbol{x}, \boldsymbol{x}') = 1 \wedge \frac{\pi(k')}{\pi(k)} \frac{j_{k'}(k)}{j_k(k')}.
$$
\n(5)

Corollary

Provided the conditions of Proposition 1 are satisfied, choosing $\{i_k\}$ such that

$$
\pi(k')j_{k'}(k) = \pi(k)j_k(k'), \quad \forall k, k' \in \mathcal{K},
$$
\n(6)

leads to a rejection-free proposal.

∢ □ ▶ к 何 ▶ к ∃ ▶

Þ

Table of Contents

[Motivation and Background](#page-3-0)

[Transport Reversible Jump Proposals](#page-8-0)

3 [Illustrative Example](#page-16-0)

- **[Testing Proposal Performance](#page-20-0)**
- 5 [Numerical Example Bayesian Factor Analysis](#page-22-0)
- **[Conditional Transport Proposals](#page-29-0)**

[Discussion](#page-36-0)

4 D F

∢母→

Sinh Arcsinh 1D 2D Example

As an illustrative example with known TMs, we use the (element-wise) inverse sinh-arcsinh transformation of [\[Jones and Pewsey, 2009\]](#page-42-0)

$$
S_{\boldsymbol{\epsilon},\boldsymbol{\delta}}(\cdot)=\sinh(\boldsymbol{\delta}^{-1}\odot(\sinh^{-1}(\cdot)+\boldsymbol{\epsilon})),\ \boldsymbol{\epsilon}\in\mathbb{R}^n,\boldsymbol{\delta}\in\mathbb{R}^n_+.
$$

For $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}_n, \mathbf{I}_{n \times n})$ and lower triangular $n \times n$ matrix L, the exact (or "perfect") transport is

$$
T(\mathbf{Z}) = S_{\epsilon,\delta}(\mathbf{L}\mathbf{Z}), \text{ i.e. } T^{-1}(\cdot) = \mathbf{L}^{-1} S_{\epsilon,\delta}^{-1}(\cdot), \tag{7}
$$

for chosen reference distributions ϕ_n , $n_k = k$. The PDF for $\boldsymbol{\theta} = T(\boldsymbol{Z})$ takes the form in [\(3\)](#page-7-1). The target of interest for this example, where $\boldsymbol{\theta}_1 = (\theta_1^{(1)}$ $\overset{(1)}{_{1}}$) and $\boldsymbol{\theta}_{2}=(\theta_{2}^{(1)})$ $\overset{(1)}{_{2}},\overset{(2)}{_{2}}),$ is

$$
\pi(k,\boldsymbol{\theta}_k) = \begin{cases} \frac{1}{4} p_{\epsilon_1,\delta_1,1}(\boldsymbol{\theta}_1), & k = 1, \\ \frac{3}{4} p_{\epsilon_2,\delta_2,\mathcal{L}}(\boldsymbol{\theta}_2), & k = 2, \end{cases}
$$
(8)

Example: Sinh Arcsinh Target with Transport RJ Proposal

Systematic draws from conditional target $\pi(x_1|k=1)$ of [\(8\)](#page-17-0) are transported from $(1,\theta_1)\in \mathcal{K}\times \mathbb{R}^1$ (top left) to $(2,(\theta_1,\theta_2))\in \mathcal{K}\times \mathbb{R}^2$ via TRJ proposals using:

> Top right Approximate affine,

Bottom left Approximate RQMA-NF,

Bottom right Perfect TM.

The auxilliary variables in the proposals are also drawn systematically (30 for each point in the source distribution).

Example: Sinh Arcsinh Target with Transport RJ Proposal

Figure: Running estimates of the model probabilities for the $k = 2$ component of the Sinh-Arcsinh target. Proposal are all TRJ with input TMs (1) Affine, (2) RQMA-NF, (3) Perfect. Ten chains on each proposal type are depicted, where alternating within-model proposals are a simple normal random walk.

Table of Contents

[Motivation and Background](#page-3-0)

- **[Transport Reversible Jump Proposals](#page-8-0)**
- **[Illustrative Example](#page-16-0)**
- 4 [Testing Proposal Performance](#page-20-0)
	- 5 [Numerical Example Bayesian Factor Analysis](#page-22-0)
	- **[Conditional Transport Proposals](#page-29-0)**

[Discussion](#page-36-0)

4 D F

Modified Bartolucci Bridge Sampling Estimator

For an RJMCMC chain, [\[Bartolucci et al., 2006\]](#page-42-1) showed that the Bayes factor $B_{k,k'}$ (ratio of marginal likelihoods) is estimated via

$$
\hat{B}_{k,k'} = \frac{N_{k'}^{-1} \sum_{i=1}^{N_{k'}} \alpha'_i}{N_k^{-1} \sum_{i=1}^{N_k} \alpha_i},
$$
\n(9)

where N_{k^\prime} and N_k are the number of proposed moves from model k^\prime to $k,$ and from k to k' , respectively in the run of the chain. When prior model probabilities are uniform, we obtain estimates of posterior model probabilities via

$$
\hat{\pi}(k) = \hat{B}_{j,k}^{-1} \bigg(1 + \sum_{i \in \mathcal{K} \setminus \{j\}} \hat{B}_{i,j} \bigg)^{-1}, \text{ for arbitrary } j \in \mathcal{K}.
$$
 (10)

The Modified Bartolucci Estimator (MBE) simply adopts the above for proposals from samples of the conditional target[s.](#page-20-0)

Davies, Salomone, Sutton, Drovandi (QUT CDS) [Transport RJ Proposals](#page-0-0) WSDL 2022 17 / 34

Table of Contents

[Motivation and Background](#page-3-0)

- **[Transport Reversible Jump Proposals](#page-8-0)**
- **[Illustrative Example](#page-16-0)**
- **[Testing Proposal Performance](#page-20-0)**
- 5 [Numerical Example Bayesian Factor Analysis](#page-22-0)
	- **[Conditional Transport Proposals](#page-29-0)**

[Discussion](#page-36-0)

4 D F

∢母→

We model monthly exchange rates of six currencies relative to the British pound, spanning January 1975 to December 1986 [\[West and Harrison, 1997,](#page-42-2)], denoted as $\boldsymbol{y}_i \in \mathbb{R}^6$ for $i=1,...,143$, of the random vector Y .

We assume $Y \sim \mathcal{N}(\mathbf{0}_6, \boldsymbol{\Sigma})$, where

- $\boldsymbol{\Sigma} = \boldsymbol{\beta}_k \boldsymbol{\beta}_k^\top + \boldsymbol{\Lambda},$
- Λ is a 6×6 positive diagonal matrix,
- \bullet β_k is a $6 \times k$ lower-triangular matrix with a positive diagonal,
- k is the number of factors, θ_k dimension $6(k+1) k(k-1)/2$.

Bayesian Factor Analysis: Model Configuration

Following [\[Lopes and West, 2004\]](#page-42-3), for each $\beta_k = [\beta_{ij}]$ with $i = 1, \ldots, 6$, $j = 1, \ldots, k$, the priors are

$$
\beta_{ij} \sim \mathcal{N}(0, 1), \quad i < j
$$
\n
$$
\beta_{ii} \sim \mathcal{N}_+(0, 1),
$$
\n
$$
\Lambda_{ii} \sim \mathcal{IG}(1.1, 0.05),
$$
\n
$$
(11)
$$

We are interested in the posterior probability of $\theta_k = (\beta_k, \mathbf{\Lambda})$ for $k = 2$ or 3 factors, with θ_k dimensions 17 and 21 respectively. Via Bayes' Theorem the posterior is

$$
\pi(k, \theta_k | \mathbf{y}) \propto p(k) p(\theta_k | k) p(\mathbf{\Lambda}) \prod_{i=1}^{143} \phi_{\beta \beta} \tau_{+\mathbf{\Lambda}}(\mathbf{y}_i), \tag{12}
$$

where $y = (y_1, ..., y_{143})$.

 QQ

Original [\[Lopes and West, 2004\]](#page-42-3) Independence Proposal

Write $\bm{\mu}_{\bm{\beta}_k}$, \bm{B}_k as the posterior mean and covariance of $\bm{\beta}_k$. Denoting $\theta_k = (\beta_k, \Lambda)$, the independence proposal is

$$
q_k(\boldsymbol{\theta}_k) = q_k(\boldsymbol{\beta}_k) \prod_{i=1}^6 q_k(\Lambda_{ii}),
$$
\n(13)

where for $k\in\mathcal{K}$, $q_k(\bm{\beta}_k)=\mathcal{N}(\bm{\mu}_{\bm{\beta}_k},2\bm{B}_k)$, and $q_k(\Lambda_{ii})=\mathcal{IG}(18,18v_{k,i}^2)$ where $v_{k,i}^2$ is the approximate conditional posterior mode of Λ_{ii} given $k.$

We compare the [\[Lopes and West, 2004\]](#page-42-3) proposal to Affine and RQMA-NF TRJ trained on finite draws $s \sim \pi(\theta_k|k)$ obtained via HMC-NUTS (for $k = 3$) and SMC (for $k = 2$).

イロト (御) (き) (き) (

Bayesian Factor Analysis: Proposal Comparison

Davies, Salomone, Sutton, Drovandi (QUT CDS) [Transport RJ Proposals](#page-0-0) WSDL 2022 22 / 34

重 \mathcal{A} .

 \sim

 299

Þ

Bayesian Factor Analysis: Running Estimates from RJMCMC Chain

Bayesian Factor Analysis: MBE Study

Figure: Violin plot showing the variability of the 2-factor model probability estimates in the case where only the 2-factor and 3-factor models are compared. Model probability estimates are obtained via the MBE. Ground truth is estimated via extended individual SMC runs $(N=5\cdot 10^4).$

Table of Contents

[Motivation and Background](#page-3-0)

- **[Transport Reversible Jump Proposals](#page-8-0)**
- **[Illustrative Example](#page-16-0)**
- **[Testing Proposal Performance](#page-20-0)**
- 5 [Numerical Example Bayesian Factor Analysis](#page-22-0)
- 6 [Conditional Transport Proposals](#page-29-0)

[Discussion](#page-36-0)

4 D F

Problem: Currently, we need to train an approximate TM for each model $k \in K$.

4 0 8

∍

 QQ

- Problem: Currently, we need to train an approximate TM for each model $k \in K$.
- Solution: Re-frame target so that a conditional approximate TM can be used.

Dimension-saturation [\[Brooks et al., 2003\]](#page-42-4) uses the augmented target

$$
\tilde{\pi}(\tilde{\boldsymbol{x}}) = \pi(\boldsymbol{x}) (\otimes_{n_{\max} - n_k} \nu)(\boldsymbol{u}_{\backsim k}),
$$
\n(14)

where n_{max} is the maximum model dimension, $\tilde{x} = (k, \theta, \boldsymbol{u}_{\sim k})$, and "∽ k" identifies that the auxiliary variable is of dimension $n_{\max} - n_k$.

Conditional Transport Method

By training a single conditional NF with the conditioning vector being the model index $k \in \mathcal{K}$, we obtain the necessary approximate TMs. The proposals are now

$$
(\boldsymbol{\theta}'_{k'}, \boldsymbol{u}_{\sim k'}) = c_{k'}^{-1} \circ \tilde{T}^{-1}(\cdot | k') \circ \tilde{T}(\cdot | k) \circ c_k(\boldsymbol{\theta}_k, \boldsymbol{u}_{\sim k}), \tag{15}
$$

where $k'\sim j_k$, and c_k is simply concatenation.

Example: Block Variable Selection in Robust Regression

We are interested in realizations of a random response variable Y through a linear combination of predictor variables X_1, X_2, X_3 and $\beta = (\beta_0, ..., \beta_3)$ parameters in a regression model

$$
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon,
$$

We model the residual error term as a mixture between standard normal variable and a normal variable with a large variance. Use the notation for the model space $k = (1, k_1, k_2, k_2)$ where $k_i \in \{0, 1\}$ for $i = 1, 2$. The prior distributions are specified as

$$
k_i \sim \text{Bernoulli}(1/2), i \in \{1, 2\}, \text{ and}
$$

\n $\beta_i \sim \mathcal{N}(0, 10^2), i \in \{0, 1, 2, 3\}.$ (16)

The target π is then the posterior distribution over the set of models and regression coefficients defined using Bayes' Theorem.

 200

Example: Block Variable Selection in Robust Regression

Figure: Pairwise plot of the conditional bivariate posterior densities in the Bayesian variable selection example. All four models feature: $k = (1, 0, 0, 0)$ (Purple), $k = (1, 1, 0, 0)$ (Green), $k = (1, 0, 1, 1)$ (Red), and $k = (1, 1, 1, 1)$ (Blue).

Example: Block Variable Selection in Robust Regression

Figure: Violin plot showing the variability of the $k = (1, 1, 1, 1)$ model probability estimate for each proposal type using the MBE vs ground truth individual SMC $(N=5\cdot 10^4)$. Individual SMC with $N=1000, 8000$ particles sampled conditional targets split into training/test samples for a total of 80 passes.

Table of Contents

[Motivation and Background](#page-3-0)

- **[Transport Reversible Jump Proposals](#page-8-0)**
- **[Illustrative Example](#page-16-0)**
- **[Testing Proposal Performance](#page-20-0)**
- 5 [Numerical Example Bayesian Factor Analysis](#page-22-0)
- 6 [Conditional Transport Proposals](#page-29-0)

[Discussion](#page-36-0)

4 D F

∢母→

We have introduced a theoretically rejection-free approach for RJMCMC proposal design utilizing transport maps.

 200

- We have introduced a theoretically rejection-free approach for RJMCMC proposal design utilizing transport maps.
- Proposals using approximate transport maps yield good results when compared to baseline approaches.

- We have introduced a theoretically rejection-free approach for RJMCMC proposal design utilizing transport maps.
- Proposals using approximate transport maps yield good results when compared to baseline approaches.
- There is the caveat of requiring samples to train the approximate TMs (but pilot runs are also required in many other approaches).
- We have introduced the idea of using a conditional normalizing flow to reduce training time. This would be useful for large model spaces!

- We have introduced a theoretically rejection-free approach for RJMCMC proposal design utilizing transport maps.
- Proposals using approximate transport maps yield good results when compared to baseline approaches.
- There is the caveat of requiring samples to train the approximate TMs (but pilot runs are also required in many other approaches).
- We have introduced the idea of using a conditional normalizing flow to reduce training time. This would be useful for large model spaces!
- Efforts are justified in expensive-likelihood scenarios.

- We have introduced a theoretically rejection-free approach for RJMCMC proposal design utilizing transport maps.
- Proposals using approximate transport maps yield good results when compared to baseline approaches.
- There is the caveat of requiring samples to train the approximate TMs (but pilot runs are also required in many other approaches).
- We have introduced the idea of using a conditional normalizing flow to reduce training time. This would be useful for large model spaces!
- Efforts are justified in expensive-likelihood scenarios.
- Finally, whilst the MBE benchmark was used to assess cross-model proposal quality, the results seem promising and justify further investigation in lieu of standard RJMCMC.

References

Bartolucci, F., Scaccia, L., and Mira, A. (2006).

Efficient Bayes factor estimation from the reversible jump output. Biometrika, 93(1):41–52.

Brooks, S. P., Giudici, P., and Roberts, G. O. (2003).

Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1):3–39.

Jones, M. C. and Pewsey, A. (2009).

Sinh-arcsinh distributions. Biometrika, 96(4):761–780.

Lopes, H. F. and West, M. (2004).

Bayesian model assessment in factor analysis. Statistica Sinica, 14(1):41–67.

West, M. and Harrison, J. (1997).

Bayesian forecasting and dynamic models. Springer series in statistics. Springer, New York, 2nd ed edition.

∍

 \sim

◂**◻▸ ◂◚▸**

 QQ

4 D F