
Transport Reversible Jump Proposals
L. Davies13 R. Salomone23 M. Sutton13 C. Drovandi13

1School of Mathematical Sciences – Queensland University of Technology

2School of Computer Science – Queensland University of Technology

3Center for Data Science – Queensland University of Technology

Motivation

The problem of interest is sampling probability distribution π on

X =
⋃
k∈K

({k} × Θk), (1)

with parameters θk ∈ Θk ⊆ Rnk andmodel index (or indicator) k ∈ K.
We want to make inference on the joint distribution (or conditional

factorization) π(k,θk) = π(k)π(θk|k). When data y is introduced,
this becomes π(k,θk|y) = π(k|y)π(θk|k,y).

Contributions

I. A new class of RJMCMC proposals, called transport reversible

jump (TRJ) proposals are developed that have desirable proper-

ties (see Proposition 1).

II. Efficacy of the proposed approach is demonstrated in numer-

ical studies on challenging examples using approximate transport

maps.

III. Amodified version of the model probability estimator of [1] is

applied to assess the quality proposals.

IV. An alternative “all-in-one” approach to training approximate

TMs using conditional normalizing flows is explored (see paper).

Reversible Jump Markov Chain Monte Carlo

We want to propose from point x to point x′, noting θk, θ
′
k′ have

dimensions nk, nk′ respectively. Following [2], we:

Require dimensions match: introduce auxiliary variables

uk ∈ Uk,k′ ⊆ Rwk and uk′ ∈ Uk′,k ⊆ Rwk′ such that

nk + wk = nk′ + wk′.

Choose a diffeomorphism e. θk′,uk′ = hk,k′(θk,uk).

A (simplified) RJMCMC Algorithm when nk′ > nk is:

1. Propose model index k′ ∼ jk( · )
2. Propose auxiliary variables uk ∼ gk,k′( · )
3. Accept with probability

α(x,x′) = 1 ∧ π(x′)jk′(k)gk′,k(u′k′)
π(x)jk(k′)gk,k′(uk)

∣∣Jhk,k′(θk,uk)
∣∣. (2)

Transport Maps and Normalizing Flows

A function T : Rn → Rn is called a transport map (TM) from distri-

bution µθ to distribution µZ if µZ = T]µθ, i.e. µZ is the pushforward
of µθ using the measurable function T .

Let {Tψ} be a family of diffeomorphismswith domain on the support

of some arbitrary base distribution µZ . Then, for fixed parameters
ψ, the PDF of the random vector ϑ = Tψ(Z) is

µϑ(ϑ;ψ) = µz(T−1
ψ (ϑ))|JT −1

ψ
(ϑ)|, ϑ ∈ Rn. (3)

Distributions µϑ are flow-based models, where {Tψ} are the normal-

izing flows [5]. With finite samples s ∼ π, we obtain an approximate

TM T̂ via density estimation, minimising the KLD from {s} to µϑ.

Proposed Method: Transport Reversible Jump

First, let ν be a univariate closed-form distribution e.g. standard
normal φ. For each model k ∈M:

Define reference distributions ⊗nk
ν.

Train flows on samples sk ∼ π(θk|k) to obtain T̂k.

Then, a transdimensional proposal where nk′ > nk is

zk ← Tk(θk),
z′k′ ← h̄k,k′(zk,uk),
θk′ ← T−1

k′ (z′k′),
(4)

where h̄k,k′ is a volume-preserving diffeomorphism on ⊗nk
ν.
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Figure 1. Illustration of the proposal class. Here, the reference ν is Gaussian.
The diffeomorphisms (h̄k,k′) on the reference distributions concatenate or

extract coordinates as required.

Proposition: Exact Transport RJMCMC

Suppose that RJMCMC proposals are of the form described in

(4), and for each k ∈ K, satisfy Tk] πk = ⊗nk
ν. Then, (2) reduces

to

α
(
x,x′

)
= 1 ∧ π(k′)

π(k)
jk′(k)
jk(k′)

. (5)

Corollary

Provided the conditions of Proposition 1 are satisfied, choosing

{jk} such that

π(k′)jk′(k) = π(k)jk(k′), ∀k, k′ ∈ K, (6)

leads to a rejection-free proposal.

Illustrative Example: 1D 2D Sinh–Arcsinh Target

Using the inverse sinh-arcsinh transformation of [3]

Sε,δ(·) = sinh(δ−1 � (sinh−1(·) + ε)), ε ∈ Rn, δ ∈ Rn
+.

For Z ∼ N (0n, In×n) and lower triangular n× n matrix L, the exact
(or “perfect”) transport is

T (Z) = Sε,δ(LZ), i.e. T−1(·) = L−1S−1
ε,δ(·), (7)

for chosen reference distributions φn, nk = k. The PDF for θ =
T (Z) takes the form in (3). The target of interest for this example,
where θ1 = (θ(1)

1 ) and θ2 = (θ(1)
2 , θ

(2)
2 ), is

π(k,θk) =
{

1
4pε1,δ1,1

(
θ1
)
, k = 1,

3
4pε2,δ2,L

(
θ2
)
, k = 2,

(8)

Figure 2. Systematic draws from conditional target π(x1|k = 1) of (8) are
transported from (1, θ1) ∈ K × R1 (top left) to (2, (θ1, θ2)) ∈ K × R2 via TRJ
proposals using: Top right Approximate affine, Bottom left Approximate

RQMA-NF, Bottom right Perfect TM. The auxilliary variables in the proposals are

also drawn systematically (30 for each point in the source distribution).

Modified Bartolucci Bridge Sampling Estimator

For an RJMCMC chain, [1] showed that the Bayes factor Bk,k′

(ratio of marginal likelihoods) is estimated via

B̂k,k′ = N−1
k′

∑Nk′
i=1 α′i

N−1
k

∑Nk
i=1 αi

, (9)

whereNk′ andNk are the number of proposedmoves frommodel

k′ to k, and from k to k′, respectively. Assuming uniform prior
model probabilities, estimates of posterior model probabilities

are

π̂(k) = B̂−1
j,k

(
1 +

∑
i∈K\{j}

B̂i,j

)−1
, for arbitrary j ∈ K. (10)

The Modified Bartolucci Estimator (MBE) adopts the above for

proposals from samples of the conditional targets.
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Bayesian Factor Analysis Example

Task is to select a model for monthly exchange rates of six curren-

cies relative to the British pound, spanning January 1975 to De-

cember 1986, denoted as yi ∈ R6 for i = 1, ..., 143, of the ran-
dom vector Y . Assume Y ∼ N (06, Σ), where k is no. factors,
Σ = βkβ

>
k + Λ, Λ is a 6 × 6 positive diagonal matrix, and βk is a

6×k lower-triangular matrix with a positive diagonal. Following [4],
for each βk = [βij] with i = 1, . . . , 6, j = 1, . . . , k, the priors are

βij ∼ N (0, 1), i < j

βii ∼ N+(0, 1),
Λii ∼ IG(1.1, 0.05),

(11)

Posterior probability of θk = (βk, Λ) for k = 2, 3 via Bayes’ Thm

π(k,θk|y) ∝ p(k)p(βk|k)p(Λ)
143∏
i=1

φββ>+Λ(yi). (12)

Figure 3. A visualization (using selected bivariate plots) of the proposal from

points on the 2-factor model (top-left) to proposed points on the 3-factor

model for each proposal type: [4] independence RJMCMC proposal (top right);

TRJ with Affine map (bottom left); TRJ with RQMA-NF map (bottom right).
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Figure 4. Violin plot showing the variability of the 2-factor model probability

estimates in the case where only the 2-factor and 3-factor models are

compared. Model probability estimates are obtained via the MBE. Ground truth

is estimated via extended individual SMC runs (N = 5 · 104).

Example: Robust Regression Variable Selection

Please see the paper (QR code below) for a detailed description.
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Figure 5. Violin plot showing the variability of the k = (1, 1, 1, 1) model
probability estimate for each proposal type using the MBE vs ground truth

individual SMC (N = 5 · 104). Individual SMC with N = 1000, 8000 particles
sampled conditional targets split into training/test samples for a total of 80

passes.

Conclusions and Future Research Avenues

Theoretically rejection-free approach for RJMCMC.

Proposals using approximate TMs outperform baseline.

Caveat of requiring samples to train the approximate TMs.

Conditional NF approach to reduce training time (see paper).

Efforts are justified in expensive-likelihood scenarios.

MBE benchmark performance justifies further investigation.
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